Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 593(6): 611-621, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30815863

RESUMO

Improving the performance of the key photosynthetic enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) by protein engineering is a critical strategy for increasing crop yields. The extensive chaperone requirement of plant Rubisco for folding and assembly has long been an impediment to this goal. Production of plant Rubisco in Escherichia coli requires the coexpression of the chloroplast chaperonin and four assembly factors. Here, we demonstrate that simultaneous expression of Rubisco and chaperones from a T7 promotor produces high levels of functional enzyme. Expressing the small subunit of Rubisco with a C-terminal hexahistidine-tag further improved assembly, resulting in a ~ 12-fold higher yield than the previously published procedure. The expression system described here provides a platform for the efficient production and engineering of plant Rubisco.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Clonagem Molecular/métodos , Chaperoninas do Grupo I/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a Fosfato/genética , Ribulose-Bifosfato Carboxilase/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Chaperoninas do Grupo I/metabolismo , Histidina/genética , Histidina/metabolismo , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fotossíntese/genética , Dobramento de Proteína , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Ribulose-Bifosfato Carboxilase/isolamento & purificação , Ribulose-Bifosfato Carboxilase/metabolismo
2.
Plant J ; 98(5): 798-812, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30735603

RESUMO

The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60ß1 and CPN60ß2 and the co-chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo-oligomers and all possible other chloroplast co-chaperonin hetero-oligomers are functional, but only that consisting of CPN11/20/23-CPN60αß1ß2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60ß1:CPN60ß2. The cryo-EM structures of endogenous CPN60αß1ß2/ADP and CPN60αß1ß2/co-chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero-oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero-oligomerization, the chloroplast co-chaperonin CPN11/20/23 forms seven GroES-like domains, which symmetrically interact with CPN60αß1ß2. Our structure also reveals an uneven distribution of roof-forming domains in the dome-shaped CPN11/20/23 co-chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αß1ß2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.


Assuntos
Chaperonina 60/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Chaperoninas do Grupo I/metabolismo , Chaperonina 60/química , Chaperonina 60/ultraestrutura , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/ultraestrutura , Cloroplastos/ultraestrutura , Microscopia Crioeletrônica/métodos , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/ultraestrutura , Fotossíntese , Dobramento de Proteína , Multimerização Proteica , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
3.
J Med Microbiol ; 67(9): 1203-1211, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30074472

RESUMO

Nearly all bacterial species express two or more chaperonin genes. Recent data indicate that type I chaperonins may be key players in bacterial infections. This is partly due to the well-known contribution of chaperonins in cellular proteostasis, the latter being compromised during bacterial host infection. In addition to their protein-folding activity, it has been revealed that certain chaperonins also exhibit moonlighting functions that can contribute in different ways to bacterial pathogenicity. Examples range from inducing adhesion molecules in Chlamydophila pneumoniae to supporting intracellular survival in Mycobacterium tuberculosis and Leishmania donovani, to inducing cytokines in Helicobacter pylori to promoting antimicrobial resistance in Escherichia coli, amongst others. This article provides a thorough reviews of our current understanding of the different mechanisms involving type I chaperonins during bacteria-host interactions, and suggests new areas to be explored and the potential of finding new targets for fighting bacterial infections.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Chaperoninas do Grupo I/metabolismo , Proteostase , Animais , Bactérias/genética , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/genética , Chaperoninas do Grupo I/genética , Humanos
4.
Science ; 358(6368): 1272-1278, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217567

RESUMO

Plant RuBisCo, a complex of eight large and eight small subunits, catalyzes the fixation of CO2 in photosynthesis. The low catalytic efficiency of RuBisCo provides strong motivation to reengineer the enzyme with the goal of increasing crop yields. However, genetic manipulation has been hampered by the failure to express plant RuBisCo in a bacterial host. We achieved the functional expression of Arabidopsis thaliana RuBisCo in Escherichia coli by coexpressing multiple chloroplast chaperones. These include the chaperonins Cpn60/Cpn20, RuBisCo accumulation factors 1 and 2, RbcX, and bundle-sheath defective-2 (BSD2). Our structural and functional analysis revealed the role of BSD2 in stabilizing an end-state assembly intermediate of eight RuBisCo large subunits until the small subunits become available. The ability to produce plant RuBisCo recombinantly will facilitate efforts to improve the enzyme through mutagenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Escherichia coli/enzimologia , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cloroplastos/metabolismo , Cristalografia por Raios X , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo I/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutagênese , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética
5.
FEBS J ; 282(20): 3959-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237751

RESUMO

The specific cochaperonin, chloroplast chaperonin (Cpn)20, consisting of two tandem GroES-like domains, is present abundantly in plant and algal chloroplasts, in addition to Cpn10, which is similar in size to GroES. How Cpn20 oligomers, containing six or eight 10-kDa domains, cooperate with the heptameric ring of chaperonin at the same time as encountering symmetry mismatch is unclear. In the present study, we characterized the functional cooperation of cochaperonins, including two plastidic Cpn20 homo-oligomers from Arabidopsis (AtCpn20) and Chlamydomonas (CrCPN20), and one algal CrCPNs hetero-oligomer, consisting of three cochaperonins, CrCPN11, CrCPN20 and CrCPN23, with two chaperonins, Escherichia coli GroEL and Chlamydomonas CrCPN60. AtCpn20 and CrCPNs were functional for assisting both chaperonins in folding model substrates ribulose bisphosphate carboxylase oxygenase from Rhodospirillum rubrum (RrRubisco) in vitro and complementing GroES function in E. coli. CrCPN20 cooperated only with CrCPN60 (and not GroEL) to refold RrRubisco in vitro and showed differential complementation with the two chaperonins in E. coli. Cochaperonin concatamers, consisting of six to eight covalently linked 10-kDa domains, were functionally similar to their respective native forms. Our results indicate that symmetrical match between chaperonin and cochaperonin is not an absolute requisite for functional cooperation.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Chaperoninas do Grupo I/metabolismo , Modelos Moleculares , Ribulose-Bifosfato Carboxilase/metabolismo , Proteínas de Algas/agonistas , Proteínas de Algas/química , Proteínas de Algas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/agonistas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Chaperonina 10/agonistas , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/agonistas , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydomonas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/agonistas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperoninas do Grupo I/agonistas , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Peso Molecular , Multimerização Proteica , Redobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rhodospirillum rubrum/enzimologia , Rhodospirillum rubrum/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética
6.
PLoS One ; 10(3): e0117724, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822285

RESUMO

Chaperonins are large ring shaped oligomers that facilitate protein folding by encapsulation within a central cavity. All chaperonins possess flexible C-termini which protrude from the equatorial domain of each subunit into the central cavity. Biochemical evidence suggests that the termini play an important role in the allosteric regulation of the ATPase cycle, in substrate folding and in complex assembly and stability. Despite the tremendous wealth of structural data available for numerous orthologous chaperonins, little structural information is available regarding the residues within the C-terminus. Herein, molecular dynamics simulations are presented which localize the termini throughout the nucleotide cycle of the group I chaperonin, GroE, from Escherichia coli. The simulation results predict that the termini undergo a heretofore unappreciated conformational cycle which is coupled to the nucleotide state of the enzyme. As such, these results have profound implications for the mechanism by which GroE utilizes nucleotide and folds client proteins.


Assuntos
Chaperoninas do Grupo I/química , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Chaperoninas do Grupo I/metabolismo , Modelos Moleculares , Ligação Proteica
7.
PLoS One ; 9(11): e113835, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25419702

RESUMO

The A. thaliana genome encodes five co-chaperonin homologs, three of which are destined to the chloroplast. Two of the proteins, Cpn10(2) and Cpn20, form functional homo-oligomers in vitro. In the current work, we present data on the structure and function of the third A. thaliana co-chaperonin, which exhibits unique properties. We found that purified recombinant Cpn10(1) forms inactive dimers in solution, in contrast to the active heptamers that are formed by canonical Cpn10s. Additionally, our data demonstrate that Cpn10(1) is capable of assembling into active hetero-oligomers together with Cpn20. This finding was reinforced by the formation of active co-chaperonin species upon mixing an inactive Cpn20 mutant with the inactive Cpn10(1). The present study constitutes the first report of a higher plant Cpn10 subunit that is able to function only upon formation of hetero-oligomers with other co-chaperonins.


Assuntos
Proteínas de Arabidopsis/química , Chaperoninas/química , Chaperoninas do Grupo I/química , Multimerização Proteica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Chaperoninas/genética , Chaperoninas/metabolismo , Eletroforese em Gel de Poliacrilamida , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo I/metabolismo , Modelos Moleculares , Mutação , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
8.
Sci China Life Sci ; 57(1): 11-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24369350

RESUMO

Our previous study demonstrated that a chloroplast co-chaperonin 20 (CPN20), one of the interaction partners of the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR), negatively regulates ABA signaling at the same node with ABAR but upstream of WRKY40 transcription repressor in Arabidopsis thaliana. In the present experiment, we showed that ABA directly inhibits the ABAR-CPN20 interaction, and also represses expression of CPN20, which depends on ABAR. CPN20 inhibits ABAR-WRKY40 interaction by competitively binding to ABAR. ABAR downregulates, but CPN20 upregulates, WRKY40 expression. The cpn20-1 mutation induces downregulation of WRKY40, and suppresses the upregulated level of WRKY40 due to the cch mutation in the ABAR gene. ABA-induced repressive effect of the WRKY40 gene is strengthened by downregulation of CPN20 but reduced by upregulation of CPN20. Together with our previously reported genetic data, we provide evidence that CPN20 functions through antagonizing the ABAR-WRKY40 coupled pathway, and ABA relieves this pathway of repression by inhibiting the ABAR-CPN20 interaction to activate ABAR-WRKY40 interaction.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperoninas do Grupo I/metabolismo , Liases/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Reação em Cadeia da Polimerase em Tempo Real , Técnicas do Sistema de Duplo-Híbrido
9.
Trends Plant Sci ; 18(12): 688-94, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24035661

RESUMO

Type I chaperonins are large oligomeric protein ensembles that are involved in the folding and assembly of other proteins. Chloroplast chaperonins and co-chaperonins exist in multiple copies of two distinct isoforms that can combine to form a range of labile oligomeric structures. This complex system increases the potential number of chaperonin substrates and possibilities for regulation. The incorporation of unique subunits into the oligomer can modify substrate specificity. Some subunits are upregulated in response to heat shock and some show organ-specific expression, whereas others possess additional functions that are unrelated to their role in protein folding. Accumulating evidence suggests that specific subunits have distinct roles in biogenesis of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco).


Assuntos
Chaperoninas do Grupo I/metabolismo , Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Arabidopsis/metabolismo , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Cloroplastos/química , Cloroplastos/metabolismo , Chaperoninas do Grupo I/química , Família Multigênica , Dobramento de Proteína , Isoformas de Proteínas , Subunidades Proteicas , Ribulose-Bifosfato Carboxilase/química , Especificidade por Substrato
10.
Plant Mol Biol ; 83(3): 205-18, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23783410

RESUMO

Previous study showed that the magnesium-protoporphyrin IX chelatase H subunit (CHLH/ABAR) positively regulates abscisic acid (ABA) signaling. Here, we investigated the functions of a CHLH/ABAR interaction protein, the chloroplast co-chaperonin 20 (CPN20) in ABA signaling in Arabidopsis thaliana. We showed that down-expression of the CPN20 gene increases, but overexpression of the CPN20 gene reduces, ABA sensitivity in the major ABA responses including ABA-induced seed germination inhibition, postgermination growth arrest, promotion of stomatal closure and inhibition of stomatal opening. Genetic evidence supports that CPN20 functions downstream or at the same node of CHLH/ABAR, but upstream of the WRKY40 transcription factor. The other CPN20 interaction partners CPN10 and CPN60 are not involved in ABA signaling. Our findings show that CPN20 functions negatively in the ABAR-WRKY40 coupled ABA signaling independently of its co-chaperonin role, and provide a new insight into the role of co-chaperones in the regulation of plant responses to environmental cues.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Chaperoninas do Grupo I/fisiologia , Transdução de Sinais , Proteínas de Arabidopsis/genética , Regulação para Baixo , Chaperoninas do Grupo I/genética , Liases/metabolismo
11.
Plant Signal Behav ; 8(2): e23074, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299425

RESUMO

Activation of Cu/Zn superoxide dismutases (CuZnSODs) is aided by Cu incorporation and disulfide isomerization by Cu chaperone of SOD (CCS). As well, an Fe-S cluster scaffold protein, ISU, might alter the incorporation of Fe or Mn into yeast MnSOD (ySOD2), thus leading to active or inactive ySOD2. However, metallochaperones involved in the activation of FeSODs are unknown. Recently, we found that a chloroplastic chaperonin cofactor, CPN20, could mediate FeSOD activity. To investigate whether Fe incorporation in FeSOD is affected by CPN20, we used inductively coupled plasma mass spectrometry to analyze the ability of CPN20 to bind Fe. CPN20 could bind Fe, and the Fe binding to FeSOD was increased with CPN20 incubation. Thus, CPN20 might be an Fe chaperone for FeSOD activation, a role independent of its well-known co-chaperonin activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Chaperoninas do Grupo I/metabolismo , Ferro/metabolismo , Superóxido Dismutase/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Chaperoninas do Grupo I/genética , Superóxido Dismutase/genética
12.
New Phytol ; 197(1): 99-110, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23057508

RESUMO

Iron superoxide dismutases (FeSODs; FSDs) are primary antioxidant enzymes in Arabidopsis thaliana chloroplasts. The stromal FSD1 conferred the only detectable FeSOD activity, whereas the thylakoid membrane- and nucleoid-co-localized FSD2 and FSD3 double mutant showed arrested chloroplast development. FeSOD requires cofactor Fe for its activity, but its mechanism of activation is unclear. We used reversed-phase high-performance liquid chromatography (HPLC), gel filtration chromatography, LC-MS/MS, protoplast transient expression and virus-induced gene silencing (VIGS) analyses to identify and characterize a factor involved in FeSOD activation. We identified the chloroplast-localized co-chaperonin CHAPERONIN 20 (CPN20) as a mediator of FeSOD activation by direct interaction. The relationship between CPN20 and FeSOD was confirmed by in vitro experiments showing that CPN20 alone could enhance FSD1, FSD2 and FSD3 activity. The in vivo results showed that CPN20-overexpressing mutants and mutants with defective co-chaperonin activity increased FSD1 activity, without changing the chaperonin CPN60 protein level, and VIGS-induced downregulation of CPN20 also led to decreased FeSOD activity. Our findings reveal that CPN20 can mediate FeSOD activation in chloroplasts, a role independent of its known function in the chaperonin system.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Chaperoninas do Grupo I/metabolismo , Superóxido Dismutase/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Chaperoninas do Grupo I/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
13.
J Proteome Res ; 12(2): 704-18, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23205679

RESUMO

Many insect groups have coevolved with bacterial endosymbionts that live within specialized host cells. As a salient example, ants in the tribe Camponotini rely on Blochmannia, an intracellular bacterial mutualist that synthesizes amino acids and recycles nitrogen for the host. We performed a shotgun, label-free, LC/MS/MS quantitative proteomic analysis to investigate the proteome of Blochmannia associated with Camponotus chromaiodes. We identified more than 330 Blochmannia proteins, or 54% coverage of the predicted proteome, as well as 244 Camponotus proteins. Using the average intensity of the top 3 "best flier" peptides along with spiking of a surrogate standard at a known concentration, we estimated the concentration (fmol/µg) of those proteins with confident identification. The estimated dynamic range of Blochmannia protein abundance spanned 3 orders of magnitude and covered diverse functional categories, with particularly high representation of metabolism, information transfer, and chaperones. GroEL, the most abundant protein, totaled 6% of Blochmannia protein abundance. Biosynthesis of essential amino acids, fatty acids, and nucleotides, and sulfate assimilation had disproportionately high coverage in the proteome, further supporting a nutritional role of the symbiosis. This first quantitative proteomic analysis of an ant endosymbiont illustrates a promising approach to study the functional basis of intimate symbioses.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Enterobacteriaceae/metabolismo , Chaperoninas do Grupo I/isolamento & purificação , Proteínas de Insetos/isolamento & purificação , Proteômica , Aminoácidos/metabolismo , Animais , Formigas/metabolismo , Formigas/microbiologia , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Enterobacteriaceae/genética , Ácidos Graxos/metabolismo , Chaperoninas do Grupo I/metabolismo , Proteínas de Insetos/metabolismo , Nucleotídeos/metabolismo , Sulfatos/metabolismo , Simbiose/fisiologia , Espectrometria de Massas em Tandem
14.
Biochem J ; 446(2): 311-20, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22657732

RESUMO

The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.


Assuntos
Proteínas de Bactérias/metabolismo , Endopeptidase Clp/metabolismo , Chaperoninas do Grupo I/metabolismo , Proteínas de Choque Térmico/metabolismo , Subunidades Proteicas/metabolismo , Synechococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caseínas/metabolismo , Sequência Conservada , Endopeptidase Clp/química , Endopeptidase Clp/genética , Estabilidade Enzimática , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
15.
J Biol Chem ; 287(24): 20471-81, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22518837

RESUMO

The chloroplast chaperonin system of plants and green algae is a curiosity as both the chaperonin cage and its lid are encoded by multiple genes, in contrast to the single genes encoding the two components of the bacterial and mitochondrial systems. In the green alga Chlamydomonas reinhardtii (Cr), three genes encode chaperonin cofactors, with cpn10 encoding a single ∼10-kDa domain and cpn20 and cpn23 encoding tandem cpn10 domains. Here, we characterized the functional interaction of these proteins with the Escherichia coli chaperonin, GroEL, which normally cooperates with GroES, a heptamer of ∼10-kDa subunits. The C. reinhardtii cofactor proteins alone were all unable to assist GroEL-mediated refolding of bacterial ribulose-bisphosphate carboxylase/oxygenase but gained this ability when CrCpn20 and/or CrCpn23 was combined with CrCpn10. Native mass spectrometry indicated the formation of hetero-oligomeric species, consisting of seven ∼10-kDa domains. The cofactor "heptamers" interacted with GroEL and encapsulated substrate protein in a nucleotide-dependent manner. Different hetero-oligomer arrangements, generated by constructing cofactor concatamers, indicated a preferential heptamer configuration for the functional CrCpn10-CrCpn23 complex. Formation of heptamer Cpn10/Cpn20 hetero-oligomers was also observed with the Arabidopsis thaliana (At) cofactors, which functioned with the chloroplast chaperonin, AtCpn60α(7)ß(7). It appears that hetero-oligomer formation occurs more generally for chloroplast chaperonin cofactors, perhaps adapting the chaperonin system for the folding of specific client proteins.


Assuntos
Proteínas de Algas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Chaperonina 10/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Chaperoninas do Grupo I/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Algas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chaperonina 10/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Chaperoninas do Grupo I/genética , Complexos Multiproteicos/genética , Dobramento de Proteína/efeitos dos fármacos
16.
Trends Biochem Sci ; 36(8): 424-32, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21723731

RESUMO

Chaperonins are ubiquitous chaperones found in Eubacteria, eukaryotic organelles (group I), Archaea and the eukaryotic cytosol (group II). They all share a common structure and a basic functional mechanism. Although a large amount of information has been gathered for the simpler group I, much less is known about group II chaperonins. Recent crystallographic and electron microscopy structures have provided new insights into the mechanism of these chaperonins and revealed important differences between group I and II chaperonins, mainly in the molecular rearrangements that take place during the functional cycle. These differences are evident for the most complex chaperonin, the eukaryotic cytosolic CCT, which highlights the uniqueness of this important molecular machine.


Assuntos
Chaperonina com TCP-1/química , Chaperoninas do Grupo I/química , Chaperoninas do Grupo II/química , Modelos Moleculares , Humanos , Conformação Proteica , Dobramento de Proteína
17.
Plant Mol Biol ; 77(1-2): 105-15, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21633907

RESUMO

The involvement of type I chaperonins in bacterial and organellar protein folding has been well-documented. In E. coli and mitochondria, these ubiquitous and highly conserved proteins form chaperonin oligomers of identical 60 kDa subunits (cpn60), while in chloroplasts, two distinct cpn60 α and ß subunit types co-exist together. The primary sequence of α and ß subunits is ~50% identical, similar to their respective homologies to the bacterial GroEL. Moreover, the A. thaliana genome contains two α and four ß genes. The functional significance of this variability in plant chaperonin proteins has not yet been elucidated. In order to gain insight into the functional variety of the chloroplast chaperonin family members, we reconstituted ß homo-oligomers from A. thaliana following their expression in bacteria and subjected them to a structure-function analysis. Our results show for the first time, that A. thaliana ß homo-oligomers can function in vitro with authentic chloroplast co-chaperonins (ch-cpn10 and ch-cpn20). We also show that oligomers made up of different ß subunit types have unique properties and different preferences for co-chaperonin partners. We propose that chloroplasts may contain active ß homo-oligomers in addition to hetero-oligomers, possibly reflecting a variety of cellular roles.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Chaperoninas do Grupo I/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Genoma de Planta , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia
18.
Proteins ; 79(4): 1172-92, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21322032

RESUMO

An analysis of the apical domain of the Group-I and Group-II chaperonins shows that they have structural similarities to two different protein folds: a "swivel-domain" phosphotransferase and a thioredoxin-like peroxiredoxin. There is no significant sequence similarity that supports either similarity and the degree of similarity based on structure is comparable but weak for both relationships. Based on possible evolutionary transitions, we deduced that a phosphotransferase origin would require both a large insertion and deletion of structure whereas a peroxiredoxin origin requires only a peripheral rearrangement, similar to an internal domain-swap. We postulate that this change could have been triggered by the insertion of a peroxiredoxin into the ATPase domain that led to the modern chaperonin domain arrangement. The peroxidoxin fold is the most highly embellished member of the thioredoxin super-family and the insertion event may have "overloaded" the core, leading to a rearrangement. A peroxiredoxin origin for the domain also provides a functional explanation, as the peroxiredoxins can act as chaperones when they adopt a multimeric ring complex, similar to the chaperonin subunit configuration. In addition, several of the GroEL apical domain hydrophobic residues which interact with the unfolded protein are located in a position that corresponds to the protein substrate binding region of the peroxiredoxin fold. We suggest that the origin of the ur-chaperonin from a thioredoxin/peroxiredoxin fold might also account for the number of thioredoxin-fold containing proteins that interact with chaperonins, such as tubulin and phosducin-like proteins.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Chaperoninas do Grupo I/química , Chaperoninas do Grupo II/química , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas de Bactérias/química , Bases de Dados de Proteínas , Modelos Moleculares , Dados de Sequência Molecular , Estresse Oxidativo , Peroxirredoxinas/química , Fosfotransferases/química , Dobramento de Proteína , Alinhamento de Sequência
19.
Mol Microbiol ; 74(5): 1152-68, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19843217

RESUMO

Chaperonins are macromolecular machines that assist in protein folding. The archaeon Methanosarcina mazei has acquired numerous bacterial genes by horizontal gene transfer. As a result, both the bacterial group I chaperonin, GroEL, and the archaeal group II chaperonin, thermosome, coexist. A proteome-wide analysis of chaperonin interactors was performed to determine the differential substrate specificity of GroEL and thermosome. At least 13% of soluble M. mazei proteins interact with chaperonins, with the two systems having partially overlapping substrate sets. Remarkably, chaperonin selectivity is independent of phylogenetic origin and is determined by distinct structural and biochemical features of proteins. GroEL prefers well-conserved proteins with complex alpha/beta domains. In contrast, thermosome substrates comprise a group of faster-evolving proteins and contain a much wider range of different domain folds, including small all-alpha and all-beta modules, and a greater number of large multidomain proteins. Thus, the group II chaperonins may have facilitated the evolution of the highly complex proteomes characteristic of eukaryotic cells.


Assuntos
Proteínas Arqueais/metabolismo , Chaperoninas do Grupo I/metabolismo , Chaperoninas do Grupo II/metabolismo , Methanosarcina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/análise , Proteínas Arqueais/química , Proteínas Arqueais/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Células Eucarióticas/metabolismo , Chaperoninas do Grupo I/química , Chaperoninas do Grupo I/genética , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/genética , Methanosarcina/genética , Modelos Moleculares , Filogenia , Ligação Proteica/genética , Dobramento de Proteína , Proteoma/análise , Especificidade por Substrato , Termossomos/química , Termossomos/genética , Termossomos/metabolismo
20.
J Biol Chem ; 282(7): 4463-4469, 2007 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-17178727

RESUMO

Chaperonins cpn60 and cpn10 are essential proteins involved in cellular protein folding. Plant chloroplasts contain a unique version of the cpn10 co-chaperonin, cpn20, which consists of two homologous cpn10-like domains (N-cpn20 and C-cpn20) that are connected by a short linker region. Although cpn20 seems to function like other single domain cpn10 oligomers, the structure and specific functions of the domains are not understood. We mutated amino acids in the "mobile loop" regions of N-cpn20, C-cpn20 or both: a highly conserved glycine, which was shown to be important for flexibility of the mobile loop, and a leucine residue shown to be involved in binding of co-chaperonin to chaperonin. The mutant proteins were purified and their oligomeric structure validated by gel filtration, native gel electrophoresis, and circular dichroism. Functional assays of protein refolding and inhibition of GroEL ATPase both showed (i) mutation of the conserved glycine reduced the activity of cpn20, whether in N-cpn20 (G32A) or C-cpn20 (G130A). The same mutation in the bacterial cpn10 (GroES G24A) had no effect on activity. (ii) Mutations in the highly conserved leucine of N-cpn20 (L35A) and in the corresponding L27A of GroES resulted in inactive protein. (iii) In contrast, mutant L133A, in which the conserved leucine of C-cpn20 was altered, retained 55% activity. We conclude that the structure of cpn20 is much more sensitive to alterations in the mobile loop than is the structure of GroES. Moreover, only N-cpn20 is necessary for activity of cpn20. However, full and efficient functioning requires both domains.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Chaperoninas/química , Cloroplastos/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 60/química , Chaperonina 60/genética , Chaperoninas/genética , Cloroplastos/genética , Glicina/química , Glicina/genética , Chaperoninas do Grupo I , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...